Immobilization of a catalytic DNA molecular beacon on Au for Pb(II) detection.

نویسندگان

  • Carla B Swearingen
  • Daryl P Wernette
  • Donald M Cropek
  • Yi Lu
  • Jonathan V Sweedler
  • Paul W Bohn
چکیده

A Pb(II)-specific DNAzyme fluorescent sensor has been modified with a thiol moiety in order to immobilize it on a Au surface. Self-assembly of the DNAzyme is accomplished by first adsorbing the single-thiolated enzyme strand (HS-17E-Dy) followed by adsorption of mercaptohexanol, which serves to displace any Au-N interactions and ensure that DNA is bound only through the S-headgroup. The preformed self-assembled monolayer is then hybridized with the complementary fluorophore-containing substrate strand (17DS-Fl). Upon reaction with Pb(II), the substrate strand is cleaved, releasing a fluorescent fragment for detection. Fluorescence intensity may be correlated with original Pb(II) concentration, and a linear calibration was obtained over nearly four decades: 10 microM > or = [Pb(II)] > or = 1 nM. The immobilized DNAzyme is a robust system; it may be regenerated after cleavage, allowing multiple sensing cycles. In addition, drying of fully assembled DNAzyme before reaction with Pb(II) does not significantly affect analytical performance. These results demonstrate that, in comparison with solution-based schemes, immobilization of the DNAzyme sensor onto a Au surface lowers the detection limit (from 10 to 1 nM), maintains activity and specificity, and allows sensor regeneration and long-term storage. Realization of Pb(II) detection through an immobilized DNAzyme is the first important step toward creation of a stand-alone, portable Pb(II) detection device such as those immobilizing DNAzyme recognition motifs in the nanofluidic pores of a microfluidic-nanofluidic hybrid multilayer device.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity.

The catalytic beacon has emerged as a general platform for sensing metal ions and organic molecules. However, few reports have taken advantage of the true potential of catalytic beacons in signal amplification through multiple enzymatic turnovers, as existing designs require either equal concentrations of substrate and DNAzyme or an excess of DNAzyme in order to maintain efficient quenching, el...

متن کامل

Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing.

By employing DNAzyme as a recognition group and amplifier, and DNA-stabilized silver nanoclusters (DNA/AgNCs) as signal reporters, we reported for the first time a label-free catalytic and molecular beacon as an amplified biosensing platform for highly selective detection of cofactors such as Pb(2+) and L-histidine.

متن کامل

DNA Biosensor for Determination of 5-Fluorouracil based on Gold Electrode Modified with Au and Polyaniline Nanoparticles and FFT Square Wave Voltammetry

In the present study, a new biosensor for 5-Fluorouracil was described using modified goldelectrode and Fast Fourier transform square wave voltammetry (FFT SWV). Calf thymus DNAimmobilization was on a gold electrode decorated with polyaniline and gold nanoparticles. Theelectrochemical characteristics of the electrodes were investigated by cyclic voltammetry, andelectroch...

متن کامل

High performance liquid chromatographic analysis of reduction products of a thiolated DNA for immobilization on gold nanoparticles

DNA-based nano-biosensors are emerging scope in the field of biosensors. Many synthetic single stranded functional DNAs have been applied for development of such sensors, recently. Immobilization of DNA oligonucleotides on the surface of gold nanoparticles is a key step in the development of most colorimetric nano-biosensors. The bound DNA is usually thiolated and forms Au-S covalent bond to th...

متن کامل

Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules.

In this work, two methods with complementary features, catalytic and molecular beacon (CAMB) and label-free fluorescent sensors using an abasic site, have been combined into new label-free CAMB sensors that possess advantages of each method. The label-free method using a dSpacer-containing molecular beacon makes CAMB more cost-effective and less interfering with the catalytic activity, while CA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 77 2  شماره 

صفحات  -

تاریخ انتشار 2005